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INFORMATION-THEORETIC NON-PARAMETRIC

UNIMODAL DENSITY ESTIMATION

by

P. Brockett, A. Charnes, K. Paick

Abstract

-We presentan information-theoretic method for nonparametric density

estimation which guarantees that the resulting density is unimodal. The

method inputs data in the form of moment or quantile information and con-

sequently can handle both data derived and non-data derived information.

In the non-data derived situation it yields a method for obtaining uni-

modal Bayesian prior distribution,
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I. INTRODUCTIOM

In many problems encountered in engineering and signal processing,

it is useful to estimate the probability density function corresponding

to some random phenomenon under study. Often it is known that the

density is unimodal, and the first few cumulants can effectively be

estimated from the available data. However, the precise parametric

formula for the generating density cannot be determined from physical

considerations alone and often might not match any of the commonly

assumed densities, even if a parametric model was appropriate.

Accordingly, the usual technique in applied research is to exercise a

procedure of nonparametric density estimation and then numerically obtain

the estimated density. There is usually no closed form solution to such

procedures (e.g., window estimates or kernel estimates), although

numerical computations such as likelihood ratio detection algorithms can

be implemented using these techniques. Unfortunately, the resulting

nonparametric density estimate obtained by smoothing the empirical

* histogram usually does not exhibit unimodality even when it is known that

the true density is unimodal. The tail behavior of these density

estimates may not be monotonic. It is, however, exactly these tails

which are frequently the major object of interest.

In this paper we present a new method for unimodal nonparametric

density estimation which is not based upon smoothing the empirical

histogram per se. Instead, it uses a method of Kemperman's [ 1] for

transforming moment problems, and couples this with an information-

theoretic generalization of Laplace's famous "principle of insufficient

reason" to obtain a unimodal density estimate. The resulting density
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estimate is rendered in closed analytic form and can easily be worked

with numerically, e.g., for optimal (likelihood ratio or Neyman-Pearson)

signal detection in noise.

It should be remarked that our method is also applicable to the

situation of prior information which is not necessarily data derived and

can be used for assessing a unimodal prior distribution for subsequent

Bayesian analysis. This topic will be pursued in a separate paper [2].

In section II we present the information-theoretic estimation

procedure that we have employed. In section III we present the method

used to transform the problem of unimodal density estimation to an

estimation problem involving an auxiliary variable. In section IV we

present the actual nonparametric estimation procedure which ensures a

unimodal density estimate and which exhibits certain pertinent

characteristics desired. In the final section, we give some numerical

results using both real and simulated data.

II. MAXIMUM ENTROPY AND MDI DENSITY ESTIMATION

The concept of statistical information and density estimation for

numerical data is of paramount importance in statistics, economics,

engineering, signal detection, and other fields. Wiener [ 3] remarked

quite early, in 1948, that the Shannon measure of information from

statistical communication theory could eventually replace Fisher's

concept of statistical information for a sample. For example, using a

measure of informational distance between two measures first developed by

Kullback and Leibler [4) in 1951, following the work of Khinchin, it has

been shown how to estimate the order in an autoregressive time series

model, how to estimate the number of factors in a factor analysis model,

and how to analyze contingency tables (cf. Akaike [5,6] and Gokhale and

2
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Kullback [ 7]). Minimizing this statistical "distance" subject to the

given constraints is called "Khinchin-Kullback-Leibler" (K2L) estimation,

or "minimum discrimination information" (MDI) estimation in the

literature. Mathematically the problem is to pick that density function

f which is "as close as possible" to some given function g, and which

satisfies certain given moment constraints, e.g.,

min If(W) i f X)(d),

subject to

1a0(x)f(x)M(dx) - 1 -o

fal(z)f(x)ML(dx) - 1 (2.1)

Jak(x)f(z)(dx) - k

Here X is some dominating measure for f and g (usually Lebesgue measure

in the continuous case, or counting measure in the discrete case),

0k,...,8kare the given moment values for the moment functions al,...,ak,

and '(x)-1. The moment functions aj(x) may be used to generate moment

or cumulant constraints, e.g., when ai is a polynomial, or may generate

centile constraints, e.g., when ai is an indicator function for a

terminal interval.

In many applications there is no a priori choice of a distribution g

to serve as a goal density in (2.1). In this case we express our

ignorance by choosing all x values to be equally likely, i.e., g(x)-l.

In this case the MDI or K2L objective functional is of the form

Jf(x)fnf(x)(da) - -jI(x)n 1T (dx)
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This is precisely minus the entropy of the density, and the MDI problem

becomes a maximum entropy (ME) problem. The ME criterion can be thought

of as taking the most "uncertain" distribution possible subject to the

given constraints. Accordingly, this principle of maximum entropy may be

construed as a new and important extension of the famous Laplace

"principle of insufficient reason," which postulates a uniform

distribution in situations in which nothing is known about the variable

in question. (See Guiasu [8) for more motivation and explanation of

these results.) Here the ME distribution is as close to uniform as

possible, subject to the given informational constraints.

The minimization of (2.1) subject to the given constraints is easily

carried out by Lagrange multipliers. The short derivation given below

can essentially be found in Guiasu [8].

Introducing a Lagrange multiplier for each constraint in (2.1) and,

changing from a minimization to a maximization, we wish to maximize

L - f(x) tn 9(1)(dx) - %1o0-J'o(x)f(x)X(dx)]TrX
+ " + ak(.k-fak(x)f W))dx)]

or, equivalently,

-l Ok f~x f , W Znx gx)dxdx
-~ ~ N T J fx-4nI I l1(x)-z2a2(x)- ..- Okak(x)}(x

k

Sf(x) in f-4 (dx)

S(x)exp{-Z 611a±(x)} 1
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The inequality follows since tnx,<x-1 with equality only at x=1. Thus,

the inequality becomes an equality when

-F."
4 fiz) - s(z).xp [ e6at(x)j ,

* and this becomes the maximizing density. We shall call (2.2) the MDI

density (or the ME density if g(x)al) subject to the constraints.

The numerical value of the constants i are found using the moment

constraints. In Brockett, Charnes, and Cooper[ 9) or Charnes, Cooper, and

Seiford (10], it is shown how to obtain the constants xi as dual -

variables in an unconstrained convex programming problem. We shall

discuss this fact further in the section concerning numerical

computation, since in the dual formulation of the MDI problem the

computation is easily accomplished using any of a number of existing

nonlinear programming codes.

III. TRANSFORMING THE UNIMODAL DENSITY ESTIMATION PROBLEM

In this section we will show how to use the information that a

density is unimodal in the nonparametric estimation problem. The

technique to be used is borrowed from Professor J. H. B. Kemperman,

whose 1971 paper [ 1) also gives more advanced and wide ranging moment

transformation techniques.

A famous characterization of "zero" unimodal random variables (due

to L. Shepp following the work of Khinchin) is the following. Suppose Y

is unimodal with mode zero. Then Y=U.X where U and X are independent,

and U is uniformly distributed over[ 0,1). A proof of this result can be

found, for example, in Feller (Ref. 11, p. 158). From the above result,

it follows immediately that
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Eh(Y) Eh*(X)

where

h*(x) E[h(UX)IX=x] h(t)dt

Our technique for solving the problem (2.1) in the unimodal case may

now be explained as follows. If Y is unimodal with mode m, then Y-m is

zero ' unimodal. First transform the given moment constraints

fai(x)fy(x)dx(x)=ei on the original variable Y to constraints of the form

Ia!(x)fX(x)dX(x)=ei on an auxiliary variable X, where

( X) a f &l(tm)dt
IL 0

If the mode is unknown, then a consistent estimator fh may be used.

(See Sager [12] for such a nonparametric mode estimator.) We then solve

the transformed MDI problem involving the constrained estimation of fx.

Using the estimated X density we then transform back to obtain the

estimate for Y. If X is estimated by i, then Y is estimated by m+u-,

and consequently is unimodal by Khinchln's theorem. The details are

given in the next section.

IV. OBTAINING THE ESTIMATED DENSITY

Decomposing the original variable Y via the Khinchin representation

Y-m=U.X, we can now transform the constraint set in (2.1) into

constraints involving X. Namely, by Kemperman's technique,

6 E[ai(Y)] =E[ai(Y-mm)] =E[a*(X)]

where

a1(z) - a1 (t4u)dt ft. j ai(t)dt
0 a

As an illustration, if an original constraint on Y is a raw moment, say

a1(x) = x
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then it follows that

[(x) -()k+I..k+1 /k+)

-E 1+ 1) guk-i,(k+l)

Thus the corresponding constraint in the auxiliary variable X involves a

sumt of moments up to order k. Similarly, if the constraint upon Y is a

* probability or centile constraint we obtain, for example,

3mPYJ-E[(I[(Y] 9 K(I[ (Y-U3 - &(

wherea*x (dt-{'gu

Having transformed the moment constraints on Y into constraints on

X, we then estimate the density for X via maximum entropy, viz., fX is the

solution to

max -fX(x) knfX(x)dx(x)

* subject to

* @9 li ffx'%dx)

81 f ai~x)fX(x)(dz)'

Ok~ J4(x) fX(x) MLdx)

7



Using the sample data we are able to estimate the parameters

*1,...,Skfor the desired moment functions al(x),a 2(x),...,ak(x) by

,02,o..,ek* ,According to formula (2.2) the estimate for the density of

X is

ix(x) exp k-E0 4zia(x)1 (4.2)

The numerical value for the constants ai can be determined using the dual

convex programming formulation outlined in Brockett, Charnes, and Cooper

[9).

An additional advantage of the ME procedure described above is that

since (4.2) defines a member of the exponential family of distributions,

the usual results concerning statistical properties (such as the

existence of sufficient statistics) are valid. Under mild conditions on

the estimator i of 0, it also follows that the parameter estimates are

asymptotically normally distributed with derivable covariance matrix (cf.

Kullback [13]). This allows for confidence interval statements to be

made concerning fX"

Now, since fx is estimated via (4.2), we may transform back to obtain

the distribution for Y. Using the relationship Y-m=U.X we have the

estimated density function for Y:

fy(y) .fy.(y) . fX(. k ) dux .

- - _J"sgf d.u, u - .(4.3)

So a -k

Sof;(Y) ON k_ G, ix)dx

" "gn(y-u )  1-P {;g~i X

8
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fYtmexp {-ai(x) dx if ygm

(4.4)

f meXp {- iai(x)} if ym

The unimodality of this density estimate is apparent since
L -yf >ym=x( ) 0 .

In the next section we give some examples using the above techniques.

V. NUMERICAL RESULTS

In this section we present several examples of the various types of

constraints (moment functions) and the resulting graphical display of the

estimated density. In the simulations we shall also display the "true"

density from which the data were obtained. Estimating the density for X

via minimum MDI (1.2) can easily be done by the duality theory given in

Charnes, Cooper, and Seiford (10].

The unimodal estimation parameters lail in the density fx(x) are

dual variables in the unconstrained convex programming problem (5.1),.with

ai* (x) replacing ai(x) and X(dx)=dx in (2.1). According to the duality

result of Charnes, Cooper, and Seiford [10], the problem (2.1) has an

unconstrained dual problem.

max E) ei i - g(x) ,x a ia (x) dx (5.1)

i=O i=0

If the density is to be estimated over the entire interval (-®,=),

then some algebraic moment constraint must be included as one of the

constraining equations. For the numerical examples given in this section

we have used the expected value of the corresponding moment constraint on

9



the auxiliary variable X which is E~riyf-2fj)7Fx X(x)dx.

A further result which should be noted is that if one wishes to

impose a continuity constraint upon the estimated density fy at the mode

m, then this continuity constraint of Y translates into another moment

constraint upon the auxiliary variable X of the form

0 - Jk+*(x) fx(x)dx

where L€+l(x)-lix (there is no corresponding ak+l(x) constraint on Y,

but from (4.3) we see the constraint (5.2) amounts to f-(m-o)-fy(Muo)).

Three different goal densities were chosen for illustration:

g1(x) -1x

iNx) 1 I 2] for W1146

1 
for IsIM

x2  . 2

19(x) x

The goal density SI(x)-l corresponds to maximum entropy estimation for

fx , To impose smoothness on the estimated density fy near the mode m,

the goal density g2 (x) was used. This goal density behaves like the

constant 1 outside Ix1<6, and dips smoothly to zero as 1xJ+O, i.e. the

goal density approximates the ME procedure given by gl(x), but constrains

the estimated density fy to be smooth around the mode. The goal density

g3(x) corresponds to the fx density which would result from fy being

normally distributed. Hence this goal density gives the "close to

normality subject to constraints" interpretation for the estimated

l* density fy.
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Three examples of predictive distributions are presented. These are

.. simulated observations from a normal distribution, a Cauchy distribution,

and some real data from acoustical returns generated by biological

undersea noise in ambient background noise.

Normal Distribution

The following constraints were imposed:

(1) Y is unimodal with the most likely value for m as 5.

(2) Pr[--sYsS] = 0.5.

(3) Prt4!Ys6I = 0.6826.

Figure 1 shows the estimated distribution for each of the goal densities.

Note that, when the data is truly normal, reasonable estimates are

obtained using only the three pieces of information above. Our procedure

can also be used even if there are no data, but just auxiliary

information (cf. Brockett, Charnes, and Paick [2]).

Cauchy Distribution

To determine the performance of this method when the moment

constraints have been derived from data, we generated 1000 Cauchy random

numbers using the congruential generator RANF in the standard FORTRAN

library. The following moment constraints were prescribed using

estimates derived from the data.

(1) Y is unimodal with possible value between -400 and 400.

(2) The most likely value for m is 0.

(3) The distribution of Y is symmetric about 0.

(4) P[-3.53254Y63.5325] - 0.8.

(5) Expected value of VJI = 1.427552.

~11



Figure 2 shows the results of the calculation using the above information

for each of the goal densities.

Distribution of Underwater Acoustic Returns

The ambient noise was recorded in a shallow water coastal region

which was dominated by acoustic energy from snapping shrimp. 30,000

recorded samples were used to obtain a distribution for these underwater

acoustic returns. The following information was obtained from the data:

1. Y is unimodal with possible values between -1024 and 767.

2. The most likely value for m is 0.

3. The following probabilities are obtained from the data:

Pr[-1024.Ya0] = 0.50

Pr[-1024&sY-71] = 0.05

Pr[-20IYIO] = 0.25

Pr[OYs20] = 0.25

Pr[OsYs71] = 0.45

4. Expected value of VW = 5.03, as estimated from the data.

Figure 3 shows the predictive distribution for each of the goal densities

based on this information.

* * 2
(Range/4) is adopted as a variance of the "normal" goal density g3(x)

for illustrative purposes. Although the variance of the Cauchy

distribution does not exist, the normal shape can still be a permissible

goal density.

12
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